LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer.

نویسندگان

  • Pattarachai Kiratisin
  • Kenneth D Tucker
  • Luciano Passador
چکیده

The Pseudomonas aeruginosa LasR protein functions in concert with N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C(12)-HSL) to coordinate the expression of target genes, including many genes that encode virulence factors, with cell density. We used a LexA-based protein interaction assay to demonstrate that LasR forms multimers only when 3O-C(12)-HSL is present. A series of LasR molecules containing internal deletions or substitutions in single, conserved amino acid residues indicated that the N-terminal portion of LasR is required for multimerization. Studies performed with these mutant versions of LasR demonstrated that the ability of LasR to multimerize correlates with its ability to function as a transcriptional activator of lasI, a gene known to be tightly regulated by the LasR-3O-C(12)-HSL regulatory system. A LasR molecule that carries a C-terminal deletion can function as a dominant-negative mutant in P. aeruginosa, as shown by its ability to decrease expression of lasB, another LasR-3O-C(12)-HSL target gene. Taken together, our data strongly support the hypothesis that LasR functions as a multimer in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vfr controls quorum sensing in Pseudomonas aeruginosa.

Pseudomonas aeruginosa controls several genes in a cell density-dependent manner through a phenomenon termed quorum sensing. The transcriptional activator protein of the las quorum-sensing system is encoded for by the lasR gene, which is at the top of a quorum-sensing hierarchy. The activation of LasR as a transcriptional activator induces the expression of multiple genes that code for factors ...

متن کامل

Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa.

The production of several virulence factors by Pseudomonas aeruginosa is controlled according to cell density through two quorum-sensing systems, las and rhl. The las system is comprised of the transcriptional activator protein LasR and of LasI, which directs the synthesis of the autoinducer PAI-1. Similarly, the rhl system consists of the transcriptional activator protein RhlR and of RhlI, whi...

متن کامل

Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening.

We report the screening of 16,000 synthetic compounds for induction and inhibition of quorum sensing in a Pseudomonas putida N-acylated l-homoserine lactone (AHL) sensor strain engineered with the LasR transcriptional activator. LasR controls virulence gene expression in the opportunistic pathogen Pseudomonas aeruginosa and is of significant interest as a therapeutic target. Nine compounds that...

متن کامل

Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes.

Two quorum-sensing systems (las and rhl) regulate virulence gene expression in Pseudomonas aeruginosa. The las system consists of a transcriptional activator, LasR, and LasI, which directs the synthesis of the autoinducer N-(3-oxododecanoyl) homoserine lactone (PAI-1). Induction of lasB (encoding elastase) and other virulence genes requires LasR and PAI-1. The rhl system consists of a putative ...

متن کامل

Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains

Candida albicans has been previously shown to stimulate the production of Pseudomonas aeruginosa phenazine toxins in dual-species colony biofilms. Here, we report that P. aeruginosa lasR mutants, which lack the master quorum sensing system regulator, regain the ability to produce quorum-sensing-regulated phenazines when cultured with C. albicans. Farnesol, a signalling molecule produced by C. a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 17  شماره 

صفحات  -

تاریخ انتشار 2002